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Maxwell Equations to Evaluate Power Loss in Bent
Optical Fibers

J. Koning R. Rieben and G. Rodrigue

Abstract

We measure the loss of power incurred by the bending of a single mguénsiexed optical fiber using vector finite element
modeling of the full-wave Maxwell equations in the optical regime. We destrate fewer grid elements can be used to model
light transmission in longer fiber lengths by using high-order basis fumgtio conjuntion with a high order energy conserving
time integration method. The power in the core is measured at sever#s poiotetermine the percentage loss. We also demonstrate
the effect of bending on the light polarization.

I. INTRODUCTION

The accurate characterization of signal loss due to waeawdtion is a valuable measure of the reliability of a comication
system. This is particularly important in light wave comroation systems where wave attenuation limits the perfocaaof
the optical fiber as a data transmission channel. Althoughtapular success has been achieved in the development-tdde
optical fibers, signal attenuation can still occur from aietsr of sources. Intrinsic glass manufacturing inconsisies can
cause wave attenuation through the scattering and absorptilight energy. Attenuation from these sources can rdrma
0.5 db/km to 1000 db/km and is dependent on the material opé#ngcular optical fiber.

Wave attenuation from external sources are more difficulthtaracterize as they can arise from many factors. This paper
focuses on measuring wave attenuation due to the bending @fptical fiber. Local bending causes wave attenuation by
changing the refractive properties of the fiber thereby icgulight energy to radiate away from the guiding directi®awer
loss from fiber bending is generally estimated using thé&mkpredictions obtained from an analysis of the equatitbrad
result from an asymptotic assumption on the cladding radiusvature radius or refractive index difference, [1],.[Pbwer
losses from the transition of the fiber from straight to curfd3, or at the outer portion of the evanescent field, [4], tan
derived in this manner. The disadvantage of these appredshéeir reliance on techniques of asymptotic analysisralhe
mathematical terms in equations are rendered unimporeg#use of their dependence on parameters that are assured to
very small. Power loss measurements from these approaehesnty be assumed accurate under extreme conditions.

We demonstrate in this paper how power loss measurementseoitaptical fiber can be effectively calculated by numéisica
solving the full wave Maxwell equations. Discretizationéxwell’s equations will be provided by the finite elementthea on
hexahedral grids, [5], [6]. This will allow for power loss amurements to be calculated under more realistic curvenhetei@s.
High-order Nedelec basis functions are used to provide nigaleapproximations to the fields, [7], [8]. Then, coars&grcan
be used to represent the geometry while still maintainingnenical accuracy and preserving the continuity propeitiege
fields across material interfaces. High order integratamesused to time evolve the equations so that energy corieenand
numerical dispersion errors are kept at a minimum, [9]. Waukh mention that other power loss computations on bentdiber
have been done. However, assumptions are made on the bergdibeat the dynamics of the light waves can be modeled by
a reduced Maxwell equations on an equivalent straight wadeg [10], [11].

II. MAXWELL’S EQUATIONS

The dynamical behavior of light waves in a lossless regoare modeled by the full-wave Maxwell equations
edE = Ox(u!B) inQ
B = -OxE  inQ

We impose the physical restriction that there are no freetrideor magnetic charges in the problem domain, yielding th
constraints

@

O-(eE) = 0 inQ
0-B = 0 inQ 2)
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Initial-boundary values are given by

AXE = Ep. 0noQ
E(t) = Ei att=tp 3)
B(t) = Bijc att=tp

The symbolQ is the two dimensional boundary of the dom&rwith an outwardly directed unit normal The symbols and
| are the electric permitivity and magnetic permeability alésng the material properties of the regiéh These parameters
are free to be tensor valued, possibly discontinuous fanstbdf space; however, we impose the restriction that theyiaear
and independent of time.

The variational form of (1) is

/ —E-W= / “B-OxW-— ?{ “BxW)-f (4)
Flo}
OxE-F
/Q M at / x
for all test functionswW,F, such that
WeH(cur,Q) = {u: Oxuell2(Q)®} (5)
FeH(divvQ) = {u: O-uelyQ)} (6)
We employ a Galerkin approximation using a finite dimendiagtor basis expansion of arbitrary polynomial degree [6]
Nw
E(r,t) =~ ZQ(t) Wi(r), W;eH(curl,Q) @
I
F
B(r,t) ~ bi(t)Fi(r), FieH(dvQ) (8)
]
which upon substitution into (4) yields the semi-discregetem of ordinary differential equations
M %e = K'Myb )
0
—b = —K
at ©

Here, K is the discrete curl matrixMe, M, are the mass matrices associated with basis funcffgvig, {Fi}, respectively,
ande,b are vectors of the electric and magnetic field degrees ofifnee For a fixed integep, the finite dimensional spaces

WP = spanWi,Wa,...,Wy,] C H(curl,Q)
FP = sparjFi,Fa,...,Fn.] CH(div,Q)
are contained in the polynomial spaces
NMw = Qp-1pp®Qpp-1p®Qppp-1
Me = Qpp-1p-1®Qp-1,pp-1®Qp-1,p-1p

whereQ; mn denotes a polynomial in the variablés,y,z) whose maximum degree Isin x, min y andn in z The vector
polynomial basis functiongW,}, {Fi} are defined piecewise on the hexahedral elements of a cotgmatagrid through a
transformation of vector polynomial basis functions define a unit reference elementOx,y,z < 1. Although simply stated,
this is a complicated procedure and details of their conStm can be found in [6]. For a polynomial basis orgerthe
approximation of (7) isp+ 1 order accurate ithh, the characteristic volume of the hexahedral element.

High order and energy conserving time-integration of (9jiien by a generalized symplectic update [9]

o= (ﬂQ‘) o] (10

wherek is the order of the symplectic integration method and therinetQ; are of the form
I Bi At Mg KM,
Qi= . R A2 —1pT
—a; AtK | — aj Bi At°K Mg ~K'My,
andAt is the discrete time step. The integration coefficients i) @re listed in Table I. In this particular mixed finite elemhe

method the instantaneous energy is the numerical versigheofotal energy stored in the electric and magnetic fields |
computed as

(11)

£ =e'Mge+b'Myb (12)



Order 1

ap=1 Bi=1

Order 2

01:1/2 B]_:O

0(2:1/2 Bzzl

Order 3

01=2/3 B1=7/24

a,=-2/3 B2=3/4

az=1 Bs=-1/24
TABLE |

SYMPLECTIC INTEGRATION COEFFICIENTS FORMETHODS OFORDER1,2AND 3

IIl. NUMERICAL RESULTS

In the following computational experiments, we simulate firopagation of an optical pulse along a fiBbsection of a
single mode optical fiber. The core of the fiber has a radiuguof &1d an index of refraction of.471 while the cladding has
a radius of 4amand an index of refraction of.456. With these properties, the fiber is capable of propagatir = 1.55um
optical wave. The ratio of problem domain size to wavelengttthereforeQ/A = 100 making this an “electrically large”
problem. The problem is excited with a space and time depenudsed voltage source boundary condition applied to the
input cap of the fiber representing a TEO1 polarized mode.spa¢ial dependence of the voltage source is derived frorsdBes
functions of the first and second kind with the appropriatedrverse propagation constants to satisfy continuitysactioe
core / cladding interface while the temporal profile is a Géars pulsed sine wave containing 20 wavelengths as shown in
Figure 1.
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Fig. 1. Spatial and temporal profile of pulsed voltage usedxtite fiber optic simulation

We perform the simulation using a straight fiber as referemwkfour bent fibers with different bend angles as summarized
in Table Il. The loss due to curvature of an optical fiber hasnbstudied extensively and it is well well known that fiber
waveguides lose power by radiation if their propagatiorsaate curved. As pointed out in [4], even if the standard tamidoss
of the fiber is disregarded, the field changes its shape inuhe=d guide (known as the bend loss); the field is forced tdwar
the outer wall in a manner resembling a centrifugal forceaffOnly for very large bending radius values is it pernbigsi
to neglect this effect; for sharply curved guides the fielstatition caused by the bend has a considerable influenceeon th
curvature loss. Bending losses in fibers are thereforeifibss either macro-scale or micro-scale. It is well knohat fosses
due to macro-scale bends where the bending radius is gteatetl@m are essentially negligible [12]. Transmission in a fiber
with a bending radius smaller than this is subject to sigoss$ Idue to radiation and bend loss [3].

We decompose the domain of the fiber into a mesh of hexahel@rakats and two material regions, namely the core and
the cladding. Because the problem is electrically largaiilitbe subject to the cumulative errors of numerical dispan. To
mitigate this effect, we use high order polynomial basiscfioms of degregp = 2 in conjunction with a high order symplectic
(energy conserving) integrator of order= 3 which has been shown to excel at reducing the effects of ricahalispersion
for electrically large time domain problems [6]. The congiignal mesh for each of the five simulations consists of, 2a@
hexahedral elements with 4 transverse elements per wathlean example of which is shown in Figure 2. Note that 4
transverse elements per wavelength is significantly lems the commonly used heuristic of 10 transverse cells peelength
for standard low order finite element approximations. Udirgh orderp = 2 basis functions on this mesh results in a semi-
discrete linear system (9) consisting af582 160 electric field unknowns and, 547,072 magnetic flux density unknowns.
This relatively large problem must therefore be solved inagajlel computational environment. The computationalistias



Bend Angle | Bend Radius  Fiber Length

0° (straight) o 155 um

15° 592.056um 155 um

30° 296.028um 155 um

450 197.352um 155 um

60° 148.014pm 155 um
TABLE |I

BEND ANGLE AND RADIUS FOR VARIOUS FIBER OPTIC MESHES

for each of the five simulations are summarized in Table Ill.

Fig. 2. Example of the computational fiber mesh

In Figure 3 we plot the normalized energy in the fiber core, poired by (12), as a function of time for each of the five
fiber simulations. The energy is normalized to the total gnef the optical pulse. As expected, the energy in the ditaig
fiber is confined in the core for the duration of the simulatiord is roughly 86% of the total pulse energy. As the fiber is
bent, the energy in the core is lost due to radiation in thdditey as the pulse traverses the bend. This effect becomes mo
drastic as the bend angle (bend radius) increases (desyems® as time increases. Note that for the 60 degree bent fiber
the core energy loss at time= 0.36ps is very close to 100%. In Figure 3 we plot the base 10 log of fkeet@magnetic
field energy, as computed by (12), for the 30 degree bent fib&yua separate snapshots in time. As the pulse traverses the
bend, the majority of the energy is radiated into the clagdand the remaining energy still guided in the core dimiessh
rapidly as a function of time. It is important to point out thihe cladding radius of 4mnwe have used for our simulations is
significantly smaller than the typical radius of 120 used in commercial grade single mode fibers. This is due tdirtits
of computational resources.

In Figure 5-Figure 9 we plot the base 10 log of the magnituddefPoynting field, log,(v/P- P) whereP = E x B, at time
t = 0.36ps for each of the five fiber simulations. The Poynting field carubed as a measure of power loss in the fiber core.
Note that the majority of the power is confined in the core fog tase of the straight fiber while the power loss increases
dramatically as the fiber is bent. In Figure 10—Figure 14 v altwo dimensional “slice” of the electric field vector ang
t = 0.36ps for each of the five fiber simulations. Each plot is sliced inlanp that is normal to the tangent curve of the fiber
bend. Note that for the straight fiber, the electric field remaircularly polarized as one would expect for a TEO1 mode.
However, as the bend angle increases and the electric figiddbeo radiate into the cladding, the orientation of thectie
field becomes considerably more complex.



No. Hexahedral Mesh Elements 147,200
No. E-Field Unknowns 3,562,160
No. B-Field Unknowns 3,547,072
No. Parallel CPUs Per Simulation 64
Total Physical Time 0.73333 ps
Discrete Time Step 3.3333e-4 ps
No. Time Steps 2200
No. Linear Solves Per Step 3
TABLE Il

SUMMARY OF COMPUTATIONAL STATISTICS FOR FIBER SIMULATIONS
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Fig. 3. Normalized core energy as a function of time for eachtheffive fiber simulations

IV. CONCLUSIONS

Computer modeling of wave propagation in complicated epttommunication devices is difficult to perform becausehef t
complex geometries and the highly restrictive time scafiesvever, the progress of vector finite element modeling tEmhipith
the advances in high speed computing environments has nale ihpossible to perform these complicated simulations and
to make accurate measurements of interest to the opticatesaring community. This was demonstrated here by moddding
the first time the classical problem of wave propagation ireat lmptical fiber using the full wave Maxwell’s equationsweo
loss measurements and polarization distortions were ctedms the fiber underwent various degrees of bending. Thervec
finite element method using high order Nedelec basis funstalong with symplectic time integration schemes provitted
numerical approximations. Thus, continuity propertieshef fields across interfaces were maintained, energy waseoged in
the semi-discrete sense and the detrimental effects of meathdispersion which commonly plague electrically lamgeblems
such as these were kept to a minimum.
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Fig. 8. Snapshot at time= 0.36ps of base 10 log of Poynting field Fig. 9. Snapshot at time= 0.36ps of base 10 log of Poynting field
magnitude for 45 degree bent fiber. magnitude for 60 degree bent fiber.

Fig. 10. Snapshot at time= 0.36ps of electric ~ Fig. 11. Snapshot at time= 0.36ps of electric  Fig. 12. Snapshot at time= 0.36ps of electric
field vector for straight fiber sliced in a plane with field vector for 15 degree bent fiber sliced in afield vector for 30 degree bent fiber sliced in a
unit normal(0,0,1). plane with unit normal—0.1110,0.994). plane with unit normal—0.221,0,0.975).
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Fig. 13. Snapshot at time= 0.36ps of electric field vector for 45 degre  Fig. 14. Snapshot at timte= 0.36ps of electric field vector for 60 degree
bent fiber sliced in a plane with unit norm@+0.328 0,0.945). bent fiber sliced in a plane with unit normg0.4310,0.902).



